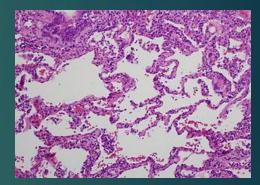
HYPERSENSITIVITY PNEUMONITIS A preventable fibrosis


MOSAVIR ANSARIE MB., FCCP

INTERSTITIAL LUNG DISEASES

A heterogeneous group of non infectious, non malignant diffuse parenchymal disorders of the lower respiratory tract affecting the alveolar wall structure and often as well small airways and blood vessels of the lung parenchyma

What is Hypersensitivity Pneumonitis?

Hypersensitivity pneumonitis (HP) is a pulmonary disease with symptoms of dyspnea and cough resulting from the inhalation of an antigen to which the subject has been previously sensitized.

Epidemiology

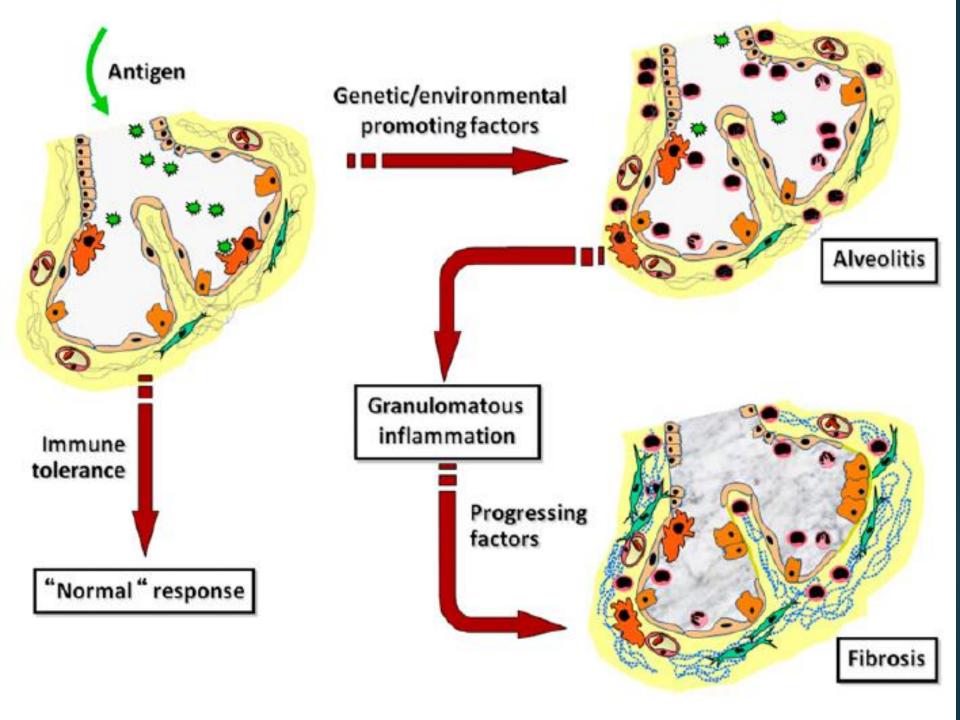
- HP represents 4% to 15% of all interstitial diseases.
- It is estimated that 0.5% to 3% of farmer will develop HP.

The difficulties in establishing the incidence and prevalence of HP are further complicated by geographic variables, including climatic conditions & in the case of farmers lung agricultural practices.

There is increasing evidence that although HP is caused by specific antigens, a trigger factor may be needed to induce the disease.

TABLE 1. ETIOLOGIC AGENTS OF HYPERSENSITIVITY PNEUMONITIS

Disease	ase Antigen	
Fungal and bacterial		
Farmer's lung	Saccharopolyspora rectivirgula	Moldy hay, grain, silage
Ventilation pneumonitis; humidifier lung; air conditioner lung	Thermoactinomyces vulgaris, Thermoactinomyces sacchari, Thermoactinomyces candidus, Klebsiella oxytoca	Contaminated forced-air systems; water reservoirs
Bagassosis	T. vulgaris	Moldy sugarcane (i.e., bagasse)
Mushroom worker's lung	T. sacchari	Moldy mushroom compost
Enoki mushroom worker's lung (Japan)	Penicillium citrinum	Moldy mushroom compost
Suberosis	Thermoactinomyces viridis, Aspergillus fumigatus, Penicillium frequentans, Penicillium glabrum	Moldy cork
Detergent lung; washing powder lung	Bacillus subtilis enzymes	Detergents (during processing or use)
Malt worker's lung	Aspergillus fumigatus, Aspergillus clavatus	Moldy barley
Sequoiosis	Graphium, Pullularia, and Trichoderma spp., Aureobasidium pullulans	Moldy wood dust
Maple bark stripper's lung	Cryptostroma corticale	Moldy maple bark
Cheese washer's lung	Penicillium casei, A. clavatus	Moldy cheese
Woodworker's lung	Alternaria spp., wood dust	Oak, cedar, and mahogany dust, pine and spruce pulp
Hardwood worker's lung	Paecilomyces	Kiln-dried wood
Paprika slicer's lung	Mucor stolonifer	Moldy paprika pods
Sauna taker's lung	Aureobasidium spp., other sources	Contaminated sauna water
Familial HP	B. subtilis	Contaminated wood dust in walls
Wood trimmer's lung	Rhizopus spp., Mucor spp.	Contaminated wood trimmings
Composter's lung	T. vulgaris, Aspergillus	Compost
Basement shower HP	Epicoccum nigrum	Mold on unventilated shower
Hot tub lung	Mycobacterium avium complex	Hot tub mists; mold on ceiling
Wine maker's lung	Botrytis cinerea	Mold on grapes
Woodsman's disease	Penicillium spp.	Oak and maple trees
Thatched roof lung	Saccharomonospora viridis	Dead grasses and leaves
Tobacco grower's lung	Aspergillus spp.	Tobacco plants
Potato riddler's lung	Thermophilic actinomycetes, S. rectivirgula, T. vulgaris, Aspergillus spp.	Moldy hay around potatoes
Summer-type pneumonitis	Trichosporon cutaneum	Contaminated old houses
Dry rot lung	Merulius lacrymans	Rotten wood
Stipatosis	Aspergillus fumigatus; T. actinomycetes	Esparto dust
Machine operator's lung	Mycobacterium immunogenum; Pseudomonas fluorescens	Aerosolized metalworking fluid
Residential provoked pneumonitis Amebae	Aureobasidium pullulans	Residential exposure
Humidifier lung	Naegleria gruberi, Acanthamoeba polyphaga, Acanthamoeba castellani, Bacillus sp., others	Contaminated water from home humidifier, ultrasonic misting fountains
Shower curtain disease Animal proteins	Phoma violacea	Moldy shower curtain
Pigeon breeder's or pigeon fancier's disease	Avian droppings, feathers, serum	Parakeets, budgerigars, pigeons, chickens, turkeys
Pituitary snuff taker's lung	Pituitary snuff	Bovine and porcine pituitary proteins
Fish meal worker's lung	Fish meal	Fish meal dust
Bat lung	Bat serum protein	Bat droppings
Furrier's lung	Animal fur dust	Animal pelts
Animal handler's lung; laboratory worker's lung	Rats, gerbils	Urine, serum, pelts, proteins
Insect proteins		
Miller's lung Lycoperdonosis	Sitophilus granarius (i.e., wheat weevil) Puffball spores	Dust-contaminated grain Lycoperdon puffballs


Etiology (summary)

Mushrooms, fungi, yeasts	Contaminated wood, humidifiers, central hot air heating ducts
Bacteria	Dairy barns (farmer's lung)
Mycobacteria	Metalworking fluids, sauna, hot tub
Bird proteins	Pigeons, dove feathers, ducks, parakeets
Chemicals	Isocyanates (auto painters), zinc, dyes

Pathophysiology

Most exposed individuals develop an immune tolerance, and the antigen inhalation may result at most in a mild increase of local lymphocytes, without clinical consequences.

The coexistence of genetic or environmental promoting factors provokes the development of an exaggerated immune reaction that results in marked lung inflammation.

Pathophysiology (continued)

Lung cellular influx and inflammatory responses are initiated via immune cell receptors called toll-like receptors TLRs are expressed on immune cells and recognize most antigens, be they viral, bacterial, or other.

Pathophysiology (continued)

In HP, when specific TLRs are activated, they react through an intracellular pathway, known as the MyD88 pathway, to release many proinflamatory cytokines and mediators.

Studies suggest that TLRs and the MyD88 pathway could be attractive targets for future therapy of HP.

Classification

Clinical presentations of HP have classically been defined as

acute,
subacute
chronic

Acute HP

Characterized by an influenza-like syndrome

Occurring a few hours after a (usually) substantial exposure

Symptoms gradually decrease over hours/days but often recur with reexposure

Acute episodes can be indistinguishable from an acute respiratory infection caused by viral or mycoplasmal agents

Subacute HP

Characterized by an insidious onset of dyspnea, fatigue, and cough

Symptoms develop over weeks to a few months

In general, subacute HP is a progressive disease, with coughing and dyspnea becoming persistent.

Chronic HP

Unrecognized and untreated acute/subacute episodes may evolve to chronic HP.

Present as a slowly progressive (insidious) chronic respiratory disease

Characterized by progressive dyspnea, cough, fatigue, malaise, and weight loss.

This presentation is common in patients with bird antigen exposure.

Diagnostic Dilemma

PFTs

- Pulmonary function tests have no discriminative properties in differentiating HP from other interstitial lung diseases.
- The typical physiological profile of acute HP is a restrictive pattern with low DLCO
- The importance of pulmonary function tests is to determine the severity of the physiologic impairment at diagnosis and during follow-up
- The results of pulmonary function tests may also guide therapy by helping the clinician to select those for whom a treatment with corticosteroids may be justified

Chest X-Ray

The first objective of chest x-ray is not to rule in HP but rather to rule out other diseases for the patient's illness.

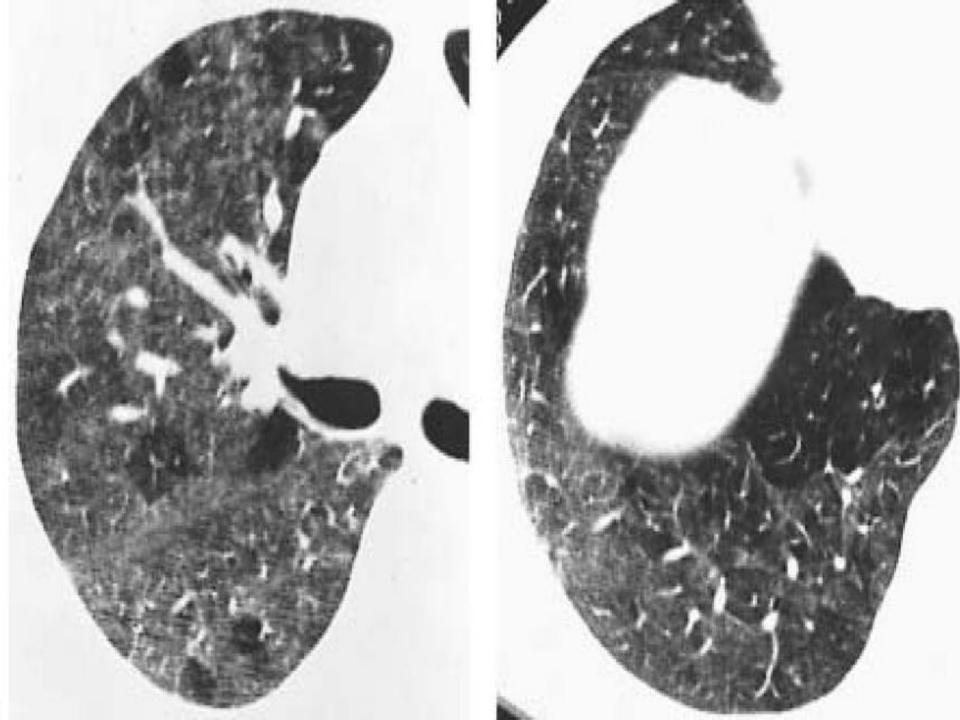
In acute HP, one expects to find groundglass infiltrates, nodular and/or striated patchy opacities

The distribution of these infiltrates is usually diffuse but often sparing the bases in the subacute form

HRCT Acute HP

HRCT may be normal in patients with symptomatic acute HP.

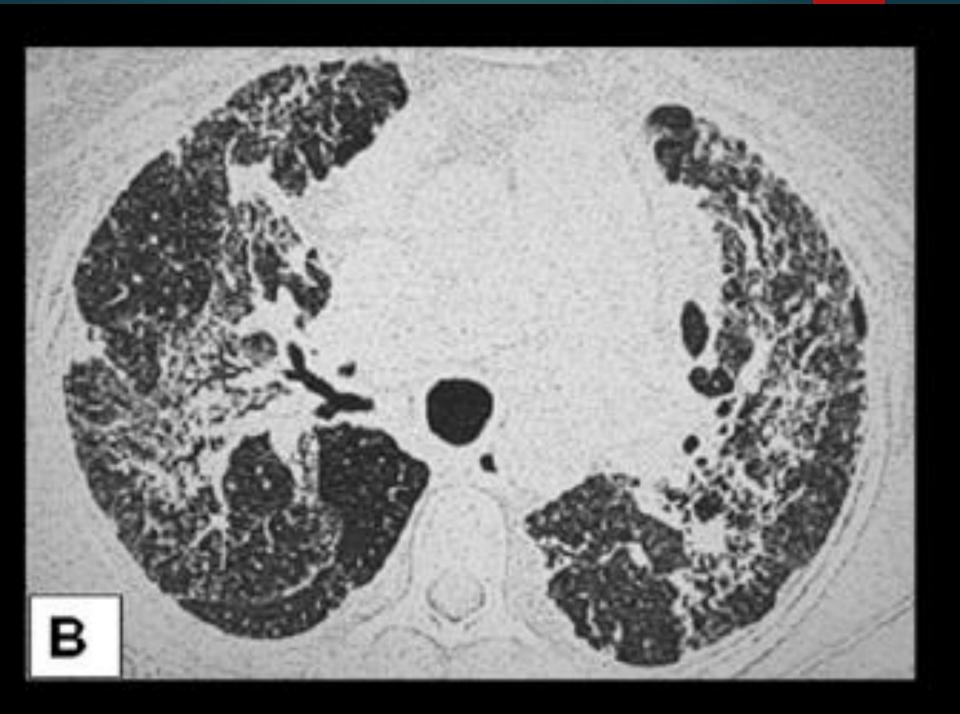
When abnormal, the predominant findings are ground-glass opacities or poorly defined small nodules.


Diffuse areas of dense air-space consolidation may be associated with groundglass opacities

HRCT Subacute HP

Ground-glass opacities or poorly defined small nodules are commonly found in subacute HP

In addition, mosaic perfusion is observed in patients with extensive bronchiolar obstruction



HRCT Chronic HP

Combination of:

- ▶ reticular
- ground-glass
- centrilobular nodular opacities
- associated with signs of "fibrosis"

(i.e., interlobular septal thickening, lobar volume loss, traction bronchiectasis, and honeycombing)

BronchoAlveolarLavage (BAL)

Forms a supportive element

An increase in the total cell count with a remarkable elevation in the percentage of T lymphocytes, often over 50%, characterizes HP

However, in patients with HP who are smokers or have chronic, fibrotic parenchymal abnormalities, the BAL lymphocyte count is lower

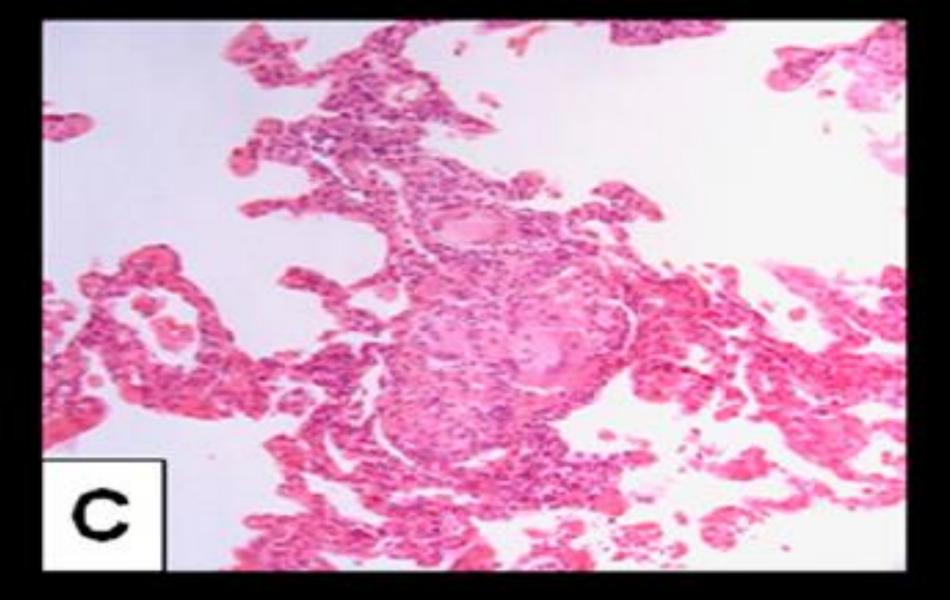
Bronchoalveolar lavage of a patient with subacute hypersensitivity pneumonitis (HP) showing a marked increase in lymphocytes

Antibodies

Specific antibodies analysis can be useful as supportive evidence

Antigens available for testing in most centers included pigeon and parakeet sera, dove feather antigen, Aspergillus sp, Penicillium, Saccharopolyspora rectivirgula, and Thermoactinomyces viridans

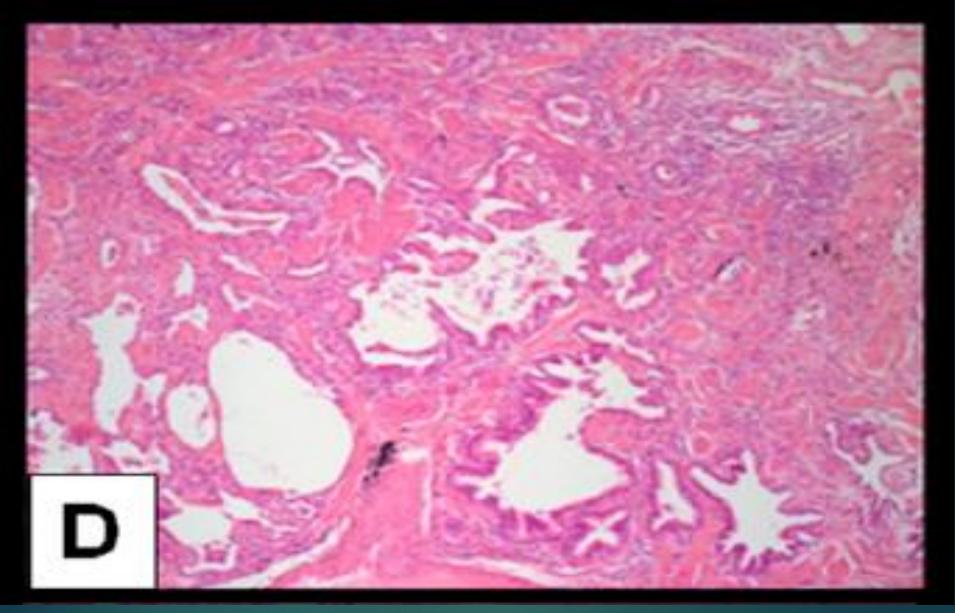
The selection of antigens to be tested often needs to be determined locally according to the prevalent antigens


Biopsy

Patients with acute HP rarely undergo biopsy.

Acute HP shows interstitial inflammation in a peribronchiolar pattern, loose histiocytic aggregates, prominent increase of interstitial neutrophils, and fibrin deposition

Biopsy (continued)


Subacute HP, independent of the etiologic agent, is characterized by a granulomatous interstitial bronchiolocentric pneumonitis. The inflammation is composed mainly of lymphocytes, with fewer plasma cells and histiocytes, and only occasional eosinophils and neutrophils.

High magnification photomicrograph of a typical interstitial HP granuloma

Biopsy (continued)

Chronic HP presents with fibrotic changes and architectural distortion superimposed on subacute changes

Chronic HP: Photomicrograph (H&E) of surgical lung biopsy showing fibrosis, architectural remodeling in peribronchiolar pattern.

	Time Frame	Clinical Features	HRCT Findings	lmmuno- Pathology	Prognosis
Acute	4-48 h r	Fever, chills Cough, hypoxemia, aches	Ground-glass infiltrates	Alveolitis, immune complex	Good
Subacute	Weeks to 4 mo	Dyspnea, cough, episodic flares	Micro-nodules air trapping	Granulomas, bronchiolitis	Good
Chronic	4 motoyears	Dyspnea, cough, fatigue, weight loss	Fibrosis +/- honeycombing, emphysema	Lymphocytic infiltration and fibrosis, neutrophil-mediated destruction	Poor

HRCT, High-resolution computed tomogography (CT scan) 2

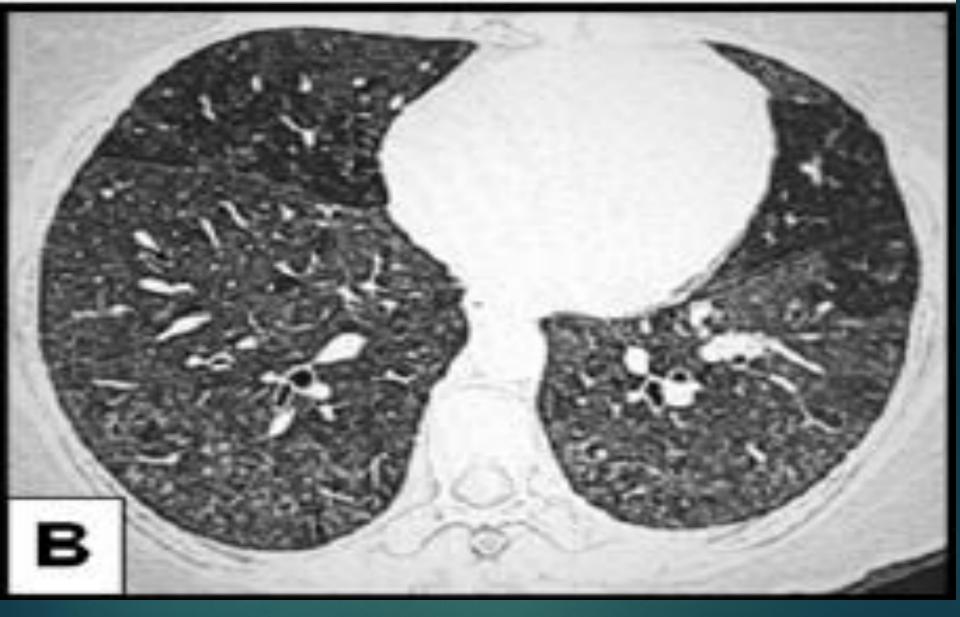
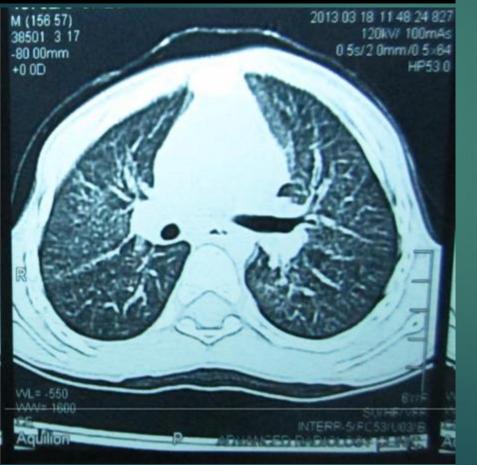

Avian Antigen Exposure

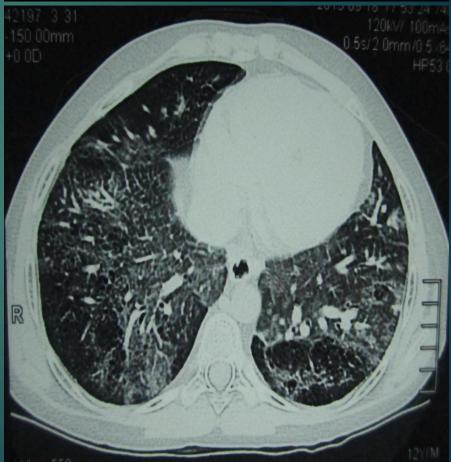
TABLE 2. DIFFERENCES IN CLINICAL, PHYSIOLOGIC, RADIOLOGIC, BRONCHOALVEOLAR LAVAGE, HISTOLOGIC, AND PROGNOSTIC FEATURES BETWEEN MICROORGANISMS AND SOLUBLE AVIAN PROTEINS EXPOSURES

Antigen	Microorganisms: Thermophilic Actinomycetes, Fungi (e.g., Farmer's Lung; Water Damage)	Soluble Avian Proteins (e.g., BFL)
Exposure	Usually short and massive: \sim 750,000	Recurrent: breed dozens of pigeons in a loft.
	actinomycetes spores per min	Insidious: prolonged and low level (i.e., few birds in the domestic environment or down products)
Clinical behavior	Primarily acute/subacute: higher frequency of fever and recurrent episodes	Recurrent BFL: cough and mild exertional dyspnea, low-grade fever
	More recurrent systemic symptoms (chills, body aches)	Insidious BFL: progressive dyspnea; clubbing
Lung function tests	Mild restrictive abnormalities that resolve	Restrictive pattern
	Airflow obstruction (usually mild) seen in chronic disease	Hypoxemia at rest or exercise common
Lung imaging studies	Chest X-ray: frequently normal	Chest X-ray: frequently abnormal
	HRCT: ground glass opacities, predominating in the lower lobes, fine nodular shadowing	HRCT: irregular reticular opacities, traction bronchiectasis and honeycombing superimposed to subacute changes
	Most frequent long-term sequelae: mild emphysema often sparing the upper parts of the lung	(e.g., ground-glass opacities or nodules)
BAL	Neutrophilia	Eosinophilia or neutrophilia
	Lymphocytosis ($>$ 50%) with decreased CD4/CD8 ratio ($<$ 1)	Lymphocytosis (< 50%) with increased (> 1.0) CD4/CD8 ratio
Lung biopsy	Small, poorly-formed noncaseating granulomas located near bronchioles	Ill-formed granulomas (may be difficult to identify)
	Peripheral airways: proliferative bronchiolitis obliterans,	Fibrotic pattern: NSIP-pattern or UIP-like pattern.
	characterized by fibroblast proliferation, and an organizing intraluminal exudate that occludes bronchioles from within	Peripheral airways: constrictive bronchiolitis
Outcome	Usually resolves	Poor, often progress to fibrosis
	Chronic exposure may lead to chronic bronchitis or emphysema	

A 40-year-old woman exposed to birds. High-resolution computed tomography (HRCT) scan obtained through lower lungs shows numerous ill-defined nodules.

A 53-year-old woman exposed to birds. HRCT images show patchy ground-glass opacities, ill-defined nodules, and patchy areas of mosaic perfusion




Same patient as in B. Expiratory image demonstrating the prominence of the attenuation differences supporting the presence of air trapping

Chronic HP. Irreversible architectural distortion simulating the UIP like pattern

Avian antigen exposure in a 6 year old girl leading to development of subacute HP demonstrating as ground glass opacity with nodules and air trapping on HRCT chest Avian antigen exposure in a <u>11</u> <u>year old boy</u> leading to development of Chronic HP demonstrating as ground glass opacities with mosaic pattern and fibrosis on HRCT chest

Management

Treatment

Prevention

In high-risk environments (such as farming activities), education may prevent respiratory problems

- Improvements in work conditions and reduction in occupational exposure
- Major preventive measures (for e.g. mask wearing, increasing ventilation etc) should be recommended for primary and secondary prevention
- Also, it is important to minimize microbial or avianantigen exposure by having a clean environment at home

Treatment

Early diagnosis and antigen avoidance are key actions in the management of HP.

Systemic corticosteroids represent the only recognized pharmacologic treatment for HP.

corticosteroids hasten the recovery from the acute stage of HP, but have no beneficial effect on longterm prognosis

The use of inhaled steroids is anecdotal. The treatment of chronic or residual disease is supportive.

Prognosis

In general, patients with acute disease, if correctly and timely diagnosed and treated, have a good prognosis, and patients usually improve.

Prognosis (continued)

By contrast, patients with subacute/chronic HP (in particular those with bird fancier's disease) often progress to irreversible pulmonary fibrosis and may die within a few years after diagnosis.

Pulmonary hypertension occurs in approximately 20% of patients with chronic HP and is associated with a greater risk of death.

Their abode is the sky

++

T LT L

JAZAKALLAH